Techniques for modeling muscle-induced forces in finite element models of skeletal structures.

نویسندگان

  • Ian R Grosse
  • Elizabeth R Dumont
  • Chris Coletta
  • Alex Tolleson
چکیده

This work introduces two mechanics-based approaches to modeling muscle forces exerted on curvilinear bone structures and compares the results with two traditional ad hoc methods of muscle loading. These new models use a combination of tensile, tangential, and normal traction loads to account for muscle fibers wrapped around curved bone surfaces. A computer program was written to interface with a commercial finite element analysis tool to automatically apply traction loads to surface faces of elements in muscle attachment regions according to the various muscle modeling methods. We modeled a highly complex skeletal structure, the skull of a Jamaican fruit bat (Artibeus jamaicensis), to compare the four muscle-loading methods. While reasonable qualitative agreement was found in the states of stress of the skull between the four muscle load modeling methods, there were substantial quantitative differences predicted in the stress states in some high stressed regions of the skull. Furthermore, our mechanics-based models required significantly less total applied muscle force to generate a bite-point reaction force identical to those produced by the ad hoc muscle loading models. Although the methods are not validated by in vivo data, we submit that muscle-load modeling methods that account for the underlying physics of muscle wrapping on curved bone surfaces are likely to provide more realistic results than ad hoc approaches that do not. We also note that, due to the geometric complexity of many bone structures--such as the skull analyzed here--load transmission paths are difficult to conceptualize a priori. Consequently, it is difficult to predict spatially where the results of finite element analyses are likely to be compromised by using ad hoc muscle modeling methods. For these reasons, it is recommended that a mechanics-based method be adopted for determination of the proper traction loads to be applied to skeletal structures due to muscular activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Appropriate Loading Techniques in Finite Element Analysis of Underground Structures

Stability of underground structures is assessed by comparing rock strength with induced stresses resulted from ground stresses. Rock mass surrounding the opening may fail either by fracture or excessive deformation caused. Accurate calculation of induced stresses is therefore fundamental in the stability analysis of an opening. Although numerical methods, particularly finite element method, are...

متن کامل

Estimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study

Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...

متن کامل

The Influence of Muscle Forces on the Stress Distribution in the Lumbar Spine

Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become available and show good correlation with experimental findings. A combined inverse dynamics and f...

متن کامل

A Comparison Study on Various Finite Element Models of Riveted Lap Joint by the Use of Dynamic Model Updating

Till now, various models have been proposed in literature to simulate the behavior of riveted structures. In order to find the most accurate analytical method in modeling the dynamic behavior of riveted structures, a comparison study is performed on several of these models, in this research. For this purpose, experimental modal analysis tests are conducted on a riveted plate to verify the effic...

متن کامل

Numerical solution of base shear in high tensioned cable antenna

A finite element solution based on equevalent elements is proposed for the static and dynamic analysis of tallhigh tensioned cable antennas. To reduce high number of degrees of freedom in space frame body of a structure, a simple equivalent beam element is defined for each simulative substructure. This numerical procedure is applicable to analyze complex three dimensional assemblies of substruc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anatomical record

دوره 290 9  شماره 

صفحات  -

تاریخ انتشار 2007